Microstructure Evolution of the GNPs-Al Mixed Powder During Ball-Milling Process
Abstract
In the present work, the microstructure evolution of the GNPs-Al mixed powder during ball-milling process was investigated. The ball-milling increased the specific surface area of the Al particles, which is beneficial for the dispersion of the GNPs. The GNPs has been exfoliated during ball-milling process, and the exfoliation effect was weakened with the increase of the GNPs content. However, as revealed by Raman evaluation (ID/IG ratio) and XPS spectrum (sp3/(sp2+sp3)), the defects of the GNPs (mainly sp3 hybridized carbon atoms) was increased due to the ball-to-ball impaction, which promote the formation of the Al4C3 phase during ball-milling process. Meanwhile, no significant change in the C-O/total was found with the prolongation of the ball-milling time. Therefore, besides the morphology observation for the evaluation of the GNPS dispersion, the corresponding variation of the defects during dispersion process should also been paid great attention.
Keywords
Full Text:
PDFReferences
Zhan, K.; Wu, Y.; Li, J.; Zhao, B.; Yan, Y.; Xie, L.; Wang, L.; Ji, V. Investigation on surface layer characteristics of shot peened graphene reinforced Al composite by X-ray diffraction method. Appl. Surf. Sci. 2018, 435, 1257–1264, DOI: 10.1016/j.apsusc.2017.11.242.
Yang, W.; Zhao, Q.; Xin, L.; Qiao, J.; Zou, J.; Shao, P.; Yu, Z.; Zhang, Q.; Wu, G. Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method. J. Alloy. Compd. 2018, 732, 748–758, DOI: 10.1016/j.jallcom.2017.10.283.
Zhao, L.; Lu, H.; Gao, Z. Microstructure and mechanical properties of Al/graphene composite produced by high-pressure torsion. Adv. Eng. Mater. 2014, 17, 976–981, DOI: 10.1002/adem.201400375.
Gao, X.; Yue, H.; Guo, E.; Zhang, H.; Lin, X.; Yao, L.; Wang, B. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater. Des. 2016, 94, 54–60, DOI: 10.1016/j.matdes.2016.01.034.
Li, J.; Zhang, W.; Geng, L. Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing. Mater. Des. 2018, 144, 159–168, DOI: 10.1016/j.matdes.2018.02.024.
Shin, S.E.; Choi, H.J.; Shin, J.H.; Bae, D.H. Strengthening behavior of few-layered graphene/aluminum composites. Carbon 2015, 82, 143–151, DOI: 10.1016/j.carbon.2014.10.044.
Shin, S.E.; Choi, H.J.; Hwang, J.Y.; Bae, D.H. Strengthening behavior of carbon/metal nanocomposites. Sci. Rep.-UK 2015, 5, 16114, DOI: 10.1038/srep16114.
Li, G.; Xiong, B. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J. Alloy. Compd. 2017, 697, 31–36, DOI: 10.1016/j.jallcom.2016.12.147.
Ju, J.M.; Wang, G.; Sim, K.H. Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties. J. Alloy. Compd. 2017, 704, 585–592, DOI: 10.1016/j.jallcom.2017.01.314.
Rashad. M.; Pan, F.; Tang, A.; Asif, M. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci. 2014, 24, 101–108, DOI: 10.1016/j.pnsc.2014.03.012.
Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta. Mater. 2012, 66, 594–597, DOI: 10.1016/j.scriptamat.2012.01.012.
Yang, W.; Chen, G.; Qiao, J.; Liu, S.; Xiao, R.; Dong, R.; Hussain, M.; Wu, G. Graphene nanoflakes reinforced Al-20Si matrix composites prepared by pressure infiltration method. Mater. Sci. Eng. A 2017, 700, 351–357, DOI: 10.1016/j.msea.2017.06.027.
Liu, G.; Zhao, N.; Shi, C.; Liu, E.; He, F.; Ma, L.; Li, Q.; Li, J.; He, C. In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites. Mater. Sci. Eng. A 2017, 699, 185–193, DOI: 10.1016/j.msea.2017.05.084.
Li, J.L.; Xiong, Y.C.; Wang, X.D.; Yan, S.J.; Yang, C.; He, W.W.; Chen, J.Z.; Wang, S.Q.; Zhang, X.Y.; Dai, S.L. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater. Sci. Eng. A 2015, 626, 400–405, DOI: 10.1016/j.msea.2014.12.102.
Dixit, S.; Mahata, A.; Mahapatra, D.R.; Kailas, S.V.; Chattopadhyay, K. Multi-layer graphene reinforced aluminum-Manufacturing of high strength composite by friction stir alloying. Compos. Part B-Eng. 2018, 136, 63–71, DOI: 10.1016/j.compositesb.2017.10.028.
Zhao, M.; Xiong, D.B.; Tan, Z.; Fan, G.; Guo, Q.; Guo, C.; Li, Z.; Zhang, D. Lateral size effect of graphene on mechanical properties of aluminum matrix nanolaminated composites. Scripta. Mater. 2017, 139, 44–48, DOI: 10.1016/j.scriptamat.2017.06.018.
Bartolucci, S.F.; Paras, J.; Rafiee, M.A.; Rafiee, J.; Lee, S.; Kapoor, D.; Koratkar, N. Graphene–aluminum nanocomposites. Mater. Sci. Eng. A 2011, 528, 7933–7937, DOI: 10.1016/j.msea.2011.07.043.
Shao, P.; Yang, W.; Zhang, Q.; Meng, Q.; Tan, X.; Xiu, Z.; Qiao, J.; Yu, Z.; Wu, G. Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method. Compos. Part A-Appl. S. 2018, 109, 151–162, DOI: 10.1016/j.compositesa.2018.03.009.
Liu, J.; Khan, U.; Coleman, J.; Fernandez, B.; Rodriguez, P.; Naher, S.; Brabazon, D. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Mater. Des. 2016, 94, 87–94, DOI: 10.1016/j.matdes.2016.01.031.
Niu, M.; Zhang, X.; Yang, J. Tribological behaviour of Fe3Al-Ba0.25Sr0.75SO4 self-lubricating composites in vacuum and air. Vacuum. 2018, 154, 315–321, DOI: 10.1016/j.vacuum.2018.05.025.
Tabandeh-Khorshid, M.; Ferguson, J.B.; Schultz, B.F.; Kim, C.S.; Cho, K.; Rohatgi, P.K. Strengthening mechanisms of graphene- and Al2O3 reinforced aluminum nanocomposites synthesized by room temperature milling. Mater. Des. 2015, 92, 79–87, DOI: 10.1016/j.matdes.2015.12.007.
Yang, W.; Dong, R.; Jiang, L.; Wu, G. Hussain, M. Unstable stacking faults in submicron/micron Al grammins in multi-SiCp/multi-Al nanocomposite. Vacuum. 2015, 122, 1–5, DOI: 10.1016/j.vacuum.2015.09.002.
Li, Z.; Guo, Q.; Li, Z.; Fan, G.; Xiong, D.B.; Su, Y.; Zhang, J.; Zhang, D. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett. 2015, 15, 8077–8083, DOI: 10.1021/acs.nanolett.5b03492.
Kumar, H.G.P.; Xavior, M.A.; Ashwath, P. Ultrasonication and microwave processing of aluminum alloy- Graphene - Al2O3 nanocomposite. Mater. Manuf. Process. 2018, 33, 13–18, DOI: 10.1080/10426914.2016.1244852.
Yolshina, L.A.; Muradymov, R.V.; Korsun, I.V.; Yakovlev, G.A.; Smirnov, S.V. Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties. J. Alloy. Compd. 2016, 663, 449–459, DOI: 10.1016/j.jallcom.2015.12.084.
Iftekhar Jaim, H.M.; Isaacs, R.A.; Rashkeev, S.N.; Kuklja, M.; Cole, D.P.; LeMieux, M.C.; Jasiuk, I.; Nilufar, S.; Salamanca-Riba, L.G. Sp2 carbon embedded in Al-6061 and Al-7075 alloys in the form of crystalline graphene nanoribbons. Carbon 2016, 107, 56–66, DOI: 10.1016/j.carbon.2016.05.053.
Zeng, X.; Teng, J.; Yu, J.G.; Tan, A.S.; Fu, D.F.; Zhang, H. Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy. Int. J. Min. Met. Mater. 2018, 25, 102–109, DOI: 10.1007/s12613-018-1552-4.
Liu, R.; Wang, W.; Chen, H.; Tan, M.; Zhang, Y. Microstructure evolution and mechanical properties of micro-/nano-bimodal size B4C particles reinforced aluminum matrix composites prepared by SPS followed by HER. Vacuum. 2018, 151, 39–50, DOI: 10.1016/j.vacuum.2018.01.052.
Dayani, D.; Shokuhfar, A.; Vaezi, M.R.; Rezaei, S.R.J.; Hosseinpour, S. Structural and Mechanical Evaluation of A Nanocrystalline Al-5 wt %Si Alloy Produced by Mechanical Alloying. Metals 2017, 7, 332, DOI: 10.3390/met7090332.
Zhang, W.; Hu, Y., Zhang, G.; Wang, Z. Formation of Nanoscale Metallic Glassy Particle Reinforced Al-Based Composite Powders by High-Energy Milling. Metals 2017, 7, 425, DOI: 10.3390/met7100425.
Guo, B.; Zhang, X.; Cen, X.; Wang, X.; Song, M.; Ni, S.; Yi, J.; Shen, T.; Du. Y. Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes. Mater. Charact. 2018, 136, 272–280, DOI: 10.1016/j.matchar.2017.12.032.
Balcı, Ö.; Prashanth, K.G.; Scudino, S.; Ağaoğulları, D.; Duman, İ.; Öveçoğlu, M.L.; Uhlenwinkel, V.; Eckert, J. Effect of Milling Time and the Consolidation Process on the Properties of Al Matrix Composites Reinforced with Fe-Based Glassy Particles. Metals 2015, 5, 669–685, DOI: 10.3390/met5020669.
Yousef, S.; Mohamed, A.; Tatariants, M. Mass production of graphene nanosheets by multi-roll milling technique. Tribol. Int. 2018, 121, 54–63, DOI: 10.1016/j.triboint.2018.01.040.
El-Ghazaly, A.; Anis, G.; Salem, H.G. Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite. Compos. Part A-Appl. S. 2017, 95, 325–336, DOI: 10.1016/j.compositesa.2017.02.006.
Xu, R.; Tan, Z.; Xiong, D.; Fan, G.; Guo, Q.; Zhang, J.; Su, Y.; Li, Z.; Zhang, D. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Compos. Part A-Appl. S. 2017, 96, 57–66, DOI: 10.1016/j.compositesa.2017.02.017.
Pérez-Bustamante, R.; Bolaños-Morales, D.; Bonilla-Martínez, J.; Estrada-Guel, I.; Martínez-Sánchez, R. Microstructural and hardness behavior of graphene- nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloy. Compd. 2014, 615, 578–582, DOI: 10.1016/j.jallcom.2014.01.225.
Bastwros, M.; Kim, G.Y.; Zhu, C.; Zhang, K.; Wang, S.; Tang, X.; Wang, X. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B-Eng. 2014, 60, 111–118, DOI: 10.1016/j.compositesb.2013.12.043.
Bisht, A.; Srivastava, M.; Kumar, R.M.; Lahiri, I.; Lahiri, D. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater. Sci. Eng. A 2017, 695, 20–28, DOI: 10.1016/j.msea.2017.04.009.
Liu, X.; Li, C.; Eckert, J.; Prashanth, K.G.; Renk, O.; Teng, L.; Liu, Y.; Bao, R.; Tao, J.; Shen, T.; Yi, J. Microstructure evolution and mechanical properties of carbon nanotubes reinforced Al matrix composites. Mater. Charact. 2017, 133, 122–132, DOI: 10.1016/j.matchar.2017.09.036.
Hu, Z.; Chen, F.; Xu, J.; Nian, Q.; Lin, D.; Chen, C.; Zhu, X.; Chen, Y.; Zhang, M. 3D printing graphene-aluminum nanocomposites. J. Alloy. Compd. 2018, 746, 269–276, DOI: 10.1016/j.jallcom.2018.02.272.
Liu, Z.Y.; Xiao, B.L.; Wang, W.G.; Ma, Z.Y. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon 2014, 69, 264–274, DOI: 10.1016/j.carbon.2013.12.025.
Fan, G.; Jiang, Y.; Tan, Z.; Guo, Q.; Xiong, D.B.; Su, Y.; Lin, R.; Hu, L.; Li, Z.; Zhang, D. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon 2018, 130, 333–339, DOI: 10.1016/j.carbon.2018.01.037.
Zhang, H.; Xu, C.; Xiao, W.; Ameyama, K.; Ma, C. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot the extrusion. Mater. Sci. Eng. A 2016, 658, 8–15, DOI: 10.1016/j.msea.2016.01.076.
Tabandeh-Khorshid, M.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. J. E. S. T. E. C. H. 2016, 19, 463–469, DOI: 10.1016/j.jestch.2015.09.005.
Tian, S.F.; Jiang, L.T.; Guo, Q.; Wu, G.H. Effect of surface roughness on tribological properties of TiB2/Al composites. Mater. Des. 2014, 53, 129–136, DOI: 10.1016/j.matdes.2013.06.038.
Chi, H.; Jiang, L.; Chen, G.; Lin, X.; Wu, G. The tribological behavior evolution of TiB2/Al composites from running-in stage to steady stage. Wear 2016, 368–369, 304–313, DOI: 10.1016/j.wear.2016.10.003.
Rikhtegar, F.; Shabestari, S.G.; Saghafian, H. Microstructural evaluation and mechanical properties of Al-CNT nanocomposites produced by different processing methods. J. Alloy. Compd. 2017, 723, 633–641, DOI: 10.1016/j.jallcom.2017.06.222.
Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57, DOI: 10.1016/j.ssc.2007.03.052.
Huang, B.R.; Chan, H.W.; Jou, S.; Cheng, G.Y.; Kuo, H.A.; Song, W.J. Structure and field emission of graphene layers on top of silicon nanowire arrays. Appl. Surf. Sci. 2016, 362, 250–256, DOI: 10.1016/j.apsusc.2015.11.256.
Zhang, L.; Feng, S.; Xiao, S.; Shen, G.; Zhang, X.; Nan, H.; Gu, X.; Ostrikov, K. Layer-controllable graphene by plasma thinning and post-annealing. Appl. Surf. Sci. 2018, 441, 639–646, DOI: 10.1016/j.apsusc.2018.02.100.
Asgharzadeh, H.; Sedigh, M. Synthesis and mechanical properties of Al matrix composites reinforced with few-layer graphene and graphene oxide. J. Alloy. Compd. 2017, 728, 47–62, DOI: 10.1016/j.jallcom.2017.08.268.
Li, G.; Xiong, B. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J. Alloy. Compd. 2017, 697, 31–36, DOI: 10.1016/j.jallcom.2016.12.147.
Crowther, A.C.; Ghassaei, A.; Jung, N.; Brus, L.E. Strong charge-transfer doping of 1 to 10 layer graphene by NO2. Acs. Nano 2012, 6, 1865–1875, DOI: 10.1021/nn300252a.
Calizo, I.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Lett. 2017, 7, 2645–2649, DOI: 10.1021/nl071033g.
Krishna, R.; Jones, A.N.; Edge, R.; Marsden, B.J. Residual stress measurements in polycrystalline graphite with micro-Raman spectroscopy. Radiat. Phys. Chem. 2015, 111, 14–23, DOI: 10.1016/j.radphyschem.2015.02.007.
Hafiz, S.M.; Chong, S.K.; Huang, N.M.; Rahman, S.A. Fabrication of high-quality graphene by hot-filament thermal chemical vapor deposition. Carbon 2015, 1, 1–11, DOI: 10.1016/j.carbon.2015.01.018.
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Boyu Ju 1, Puzhen Shao 2, Wenshu Yang 3, Qiang Zhang 4, Ziyang Xiu 5, Jing Qiao 6, Gaohui Wu 7
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.